-

Do (] [

Here we are!

Simone Pulcini
Software Architect, Cloud lover, GDG Rome member

“Quality lies in the details, so | make it a daily quest to uncover them”. Simone is a
passion-driven senior software architect, constantly seeking innovation and automation.
He loves new dev languages, methodologies, and tools capable to inflame his willingness
to learn. Family, friends, books and films are his personal pillars. SUB-ZERO TEAM

Luigi is a DevOps Architect with several years of experience in the IT battlefields, he loves :

using a methodological approach to problem solving driven by a passion for IT and doing
things right. "My good intention is to keep learning, experimenting, challenging myself and G D G
having new experiences." He is also a proud junior father of two lively daughters.

Luigi Giuseppe Corollo

DevOps Architect, GDG Rome member

Rome

Agenda & Legenda _pemo

e Release Management
It all starts from a version TAG.... What: Best Practise section

O
Z ...tota rr?etm:nt!tch glt rcT:or:]\tr.nltRmIessage How To: Best Open Source
--auto .a ed with =€ a. 'C, clease Tools choses in our use-case

o Semantic Release: Plugin Lifecycle .

o Repository management: Pre-Release strategy Example: A running
e Release Management & Automation tools end2end demo

o Automation Tools Overview

o Tekton

o ArgoCD
e Demo

o Solution Architecture & Demo

E -

It all starts from a version TAG.... | Theoy > Tool > Demo

e it's a GIT tag with a specific format
o vX.Y.Z<label> where X,Y and Z are numbers with an

optional label V 1 . O . O
e Xrepresents a “Major Version” (e.g. a breaking - g

Cha nge) Major Versidn , Patch Version

“ - - " Breaking change, e.g. a Minor Version small request or bug-fix,

e Y represents a “Minor Version” (e.g. a new feature) s esuwess vonmesin e e ot r st
e Zrepresent a “Patch Version” (e.g. a bug-fix, a st syn

performance tuning etc)

We should have a set of rules to be applied to calculate
this tag each time there’s a change to our code-base.

9 [=4]

Let’s define this set of rules!

..to a “Semantic” git commit message - Tool >Demo

<type>[optional scope]: <description>
[optional body]

[optional footer(s)]

Based on “Conventional Commits” specification

Type - {- - build:, chore:, ci:, docs:, style:, refactor:, perf:, test :}
Body: {*.}

R Footer: {*[BReAkznG chANGE :}

..automated with Semantic Release | Theoy) Too > Demo

it's a tool that runs in a ClI

it's written in JS using nedes

it defines a lifecycle that covers the whole release management process

it uses a =g architecture (to enable support for different codebases using
most of the package managers tools, registries and platforms)

it's open source with good support and a great community

e your configuration resides in a single yaml/json descriptor file

9 [=4]

Semantic Release: Plugin Lifecycle -
Tool >Demo

:> Q Verify Conditions - Ea0h plugin will implement one or more lifecycle steps.

Analyze Commits
? y Semantic release engine will execute the lifecycle, one step at a time,

running the step implementation for each declared plugin

0O

) Verify Release

Plugin execution order = plugin array declaration (descriptor)
© Generate Notes

° @semantic-release/commit-analyzer

© Add Channel O analyzecommits: Determine the type of release by analyzing commits with conventional-changelog
° @semantic-release/release-notes-generator
O Prepare o generateNotes: Generate release notes for the commits added since the last release with
conventional-changelog
O Publish ° @semantic-release/github
o) verifyConditions: Verify the presence and the validity of the GitHub authentication and release
© Success configuration

publish: Publish a GitHub release

o success: Add a comment to GitHub issues and pull requests resolved in the release
< | @ Fail

o) fail: Open a GitHub issue when a release fails

https://github.com/semantic-release/commit-analyzer
https://github.com/conventional-changelog/conventional-changelog
https://github.com/semantic-release/release-notes-generator
https://github.com/conventional-changelog/conventional-changelog
https://github.com/semantic-release/github
https://help.github.com/articles/about-releases

Definitions - Tool >Demo

e Protected branch: a long-lived branch, created at repo startup. When it receives a merge, a
release will be done (e.g. pre/beta, main....)

e Pre-release branch: a branch that produces pre-release versions.

e Release branch: a branch that produces release version

e Pre-release: a kind of release for “internal-use” only. One of these will be eligible to become a
release. (e.g. pre/beta). Version number is fixed and label number will increment;
v1.0.2-beta.1—v1.0.2-beta.2—v1.0.2-beta.3

e Release: a pre-release that becomes a release (merge pre/beta into main): v1.0.2 (a release for
the masses :-))

e Channel: a label for the distribution channel name adopter for a particular branch (like @next or
@latest)

9 [=4]

Repository management: Pre-Release | Theoy > Tool >Demo

strategy

deploy
|:‘I> Prod env
deploy
|:{> Dev env

re/beta
Git P
feature
~0— @ —— @ ——
: ¢ I ¢ et ¢ . release to the
1.0.11-beta.6 fc;ea ebnewh pull req to pre/beta merge to main runtime enviroment
Dev eature branch 4 0.11-beta.7 1.0.11

10

Anatomy of a .releaserc.yml file Theory) Tool > Demo

plugins: N
- "@semantic-release/commit-analyzer" H
- "@semantic-release/release-notes-generator" L F)|LJ£J|r155

- "@semantic-release/changelog" . .
- - "@semantic-release/npm" COﬂflguratlonS

- "@semantic-release/github”
- - "@semantic-release/git"
- assets:

- package.json

- package-lock.json

- CHANGELOG.md

message: |-

ci(release): ${nextRelease.version} [skip ci]

${nextRelease.notes} J
branches:
#child branches coming from tagged version for bugfix (1.1.x) or new features (1.x)
#maintenance branch
- name: "+([0-9])?(.{+([0-9]),x}).x"
channel: "latest"
#release a production version when merging towards main
- name: "main" 'l . .
channel: "latest" Conflguratlons
#prerelease branch
- name: "pre/beta"

N

channel: "next"
prerelease: "beta"
debug: true ’

Release Management &
Automation tools

“ DEVOPS h

CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY

0

g

m
g
n

Our approach:

e Vendor Agnostic solutions

e Cloud Native (k8s)
implementations

e \Widely used open source
projects

e Adoption of consolidated
strategies (DevOps) and new
best practices (GitOps)

12

Automation: Tools Overview

Continuous Integration —— Release Management Continuous Deployment }

"-.‘ verSIOn push Sync deploy

Q’;teSt - manager
bUIld v1.0.0 unn
COde {:} . IIIII = ° IaC

Docker Hub

2 Ei%a @ >
Github JTEKTON semantic-release Q(QO

package /.

Y

MNA v100

13

Tekton: What is?

What is Tekton ?

e Open-source CI platform implementation
running natively in Kubernetes.

e Enables the definition of pipeline as code

e Open Source Ecosystem with a large catalog
of reusable components

e Continuous Delivery Foundation (CDF)

9 [=4]

14

Tekton: How it works?

/ Pipeline parallel task 3
build security test @ Task
trigger] ‘ '
E >‘ @ Task @ Task ase 5
code repository E « . :
: - B 2 T :
A ; @ Ao K @ ask 3 :
push - e T 5
! t config storage ;
image
Dev \ 2

-

image
repository
\

T

reusslaik
(-

k\

pipeline as code
.
N

task

yaml|

_ catalog)

A

g

15

Continuous Deployment with ArgoCD

What is ArgoCD?

source of truth

e Open-source declarative O Changes
GitOps continuous delivery \ 2{:;6,Staws
tool, native k8s.
e Automated Sync Deployment push 1ac TR———
& Drift Detection OfQO
e Integrated Notification
Engine Ops
e CNCF Graduated PrOjeCt i desired state J} < Synch > {{ current state }}

9 [=4]

16

ArgoCD: Application Example

Theory Demo

kind: Application
metadata:
name: demo-app-dev
annotations:
notifications.argoproj.io/subscribe.on-deployed.slack: demo-app-deploy
notifications.argoproj.io/subscribe.on-sync-failed.slack: demo-app-deploy

notifications.argoproj.io/subscribe.on-sync-succeeded.slack: demo-app-deploy
finalizers:

- resources-finalizer.argocd.argoproj.io
spec:
destination:
namespace: demo-dev

apiVersion: argoproj.io/vlalphal :}>

—+— Notification

Argo Spec. Kind

a2 slack
Channels

server: https://kubernetes.default.svc -—
project: default
source:

helm:

valueFiles:
- env/dev.values.yaml

path: .

repoURL: https://github.com/subzero-team/demo-app-iac

targetRevision: main
syncPolicy:
automated:

prune: true

selfHeal: true -~

Destination
Configuration e«

— Source Configuration O

syncOptions:
- CreateNamespace=true

demo-app-dev.yaml

Synch Configuration

17

Demo's Solution Architecture Theory > Tool >Demo

Cl CD
A A
r ar R
% Fetch Repo Build & Test Semantic Release Update Version Synch Tt @
TEKTON [Task] [Task] [Task] % [Task] [ArgoCD] = ;
GKE |
prod ;
tag P publish .
— h =
@ code-repo ’ iac-rgpo N
_— > v S
[git] v1.0.11-beta.8 | Image v1.0.11-beta.8 git] @D
pre/beta Repo
. A A
PyPi j -0
Dev ity E a8 slack
Ops

18

Demo - Pipeline ClI Theory > Tool > Demo

Cl
o
r 1
Fetch Repo Build & Test Semantic Release Update Version
[Task] [Task] [Task] E\Ea [Task]

Environment det;

Dashboard

@ code-repo

—> ;
pre/beta [oit] v1.0.11-beta.8

Dev

Documentation and resources

19

Demo - Pipeline CD

Theory > Tool

Synch
[ArgoCD]

@ n e
o @i @
4

update version A

v1.0.11-beta.8 a2 slack

sssssssssssssss

20

Thanks! S

e https://subzero-team.qithub.io/

e https://bit.ly/Release-lt-Like-a-Pro-Part-1
e https://bit.ly/Release-lt-Like-a-Pro-Part-2
e https://bit.ly/Release-It-Like-a-Pro-Part-3

e https://www.linkedin.com/in/simonepulcini/
https://www.linkedin.com/in/luigicorollo/

: SCAN ME

https://bit.ly/Release-It-Like-a-Pro-Part-1
https://bit.ly/Release-It-Like-a-Pro-Part-2
https://bit.ly/Release-It-Like-a-Pro-Part-3
https://subzero-team.github.io/
https://www.linkedin.com/in/simonepulcini/
https://www.linkedin.com/in/luigicorollo/

